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Let A be a self-adjoint operator and ϕ its cyclic vector. In this work we study spectral properties of rank one
perturbations of A

Aθ = A + θ〈ϕ, ·〉ϕ

in relation to their dependence on the real parameter θ. We find bounds on averages of spectral measures for
semi-infinite Jacobi matrices and give criteria which guarantee existence of mixed spectral types for θ in a set
of positive Lebesgue measure.
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1 Introduction

In this paper, spectral properties of rank one perturbations of a fixed semi-infinite Jacobi operator are considered.
These perturbations depend on a real parameter θ (coupling constant) and our main concern is the behavior of
different spectral types as this parameter θ varies. In particular, we address the problem of coexistence of distinct
kinds of spectra for sets of θ’s of positive Lebesgue measure. It is known that if the support of one type of
spectrum for the unperturbed operator has positive measure, then there will be a set of θ’s of positive measure
too, such that the corresponding perturbed operator A will have this kind of spectrum somewhere in the real line
R. Thus, a support of the spectrum with positive measure gives rise to a set of coupling constants of positive
measure. This result straightforwardly follows from the averaging formula (2.1) below.

Our aim is to find out more about the structure of the set of coupling constants, particularly about its distribu-
tion on the real line. For the case of semi-infinite Jacobi matrices with potentials vanishing in a finite interval, we
were able to give conditions on the size of intervals of coupling constants which imply existence of a set of posi-
tive measure contained in such intervals, so that the operators generated by rank one perturbations corresponding
to points in that set will have mixed singular and a.c. spectra. These conditions will depend on the measure of the
support of the absolutely continuous part and on the length of the interval where the potential of the unperturbed
operator vanishes. The main tools we use are bounds on averages of spectral measures, which are associated
with self-adjoint operators generated by rank one perturbations. For the bound from below, we need a result of
Chebyshev et al. which follows from the quadrature formula.

The paper is organized as follows. In Section 2 we prove some preliminary results which give us the required
bounds and use them for general Jacobi operators. It is shown that the average of norms of eigenvectors for a
finite part of the matrix associated to the operator is bounded by the Lebesgue measure of subsets contained in
the support of the a.c. part of the spectral measure. As a corollary, bounds on the average of these norms are given
in terms of the difference of eigenvalues. In Section 3 we consider operators which are constant in an interval.
It will be important to construct finite matrices with eigenvalues that do not depend on a real parameter. Explicit
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estimates are given on the measure of sets where the spectral density is positive and conditions are obtained
which imply mixed spectra. Examples are discussed and it is shown that counterexamples are possible, so that
the mentioned coexistence does not hold in every case. These results are related to the ones in [7] where the
Sturm–Liouville case was studied. In the last section we turn again to the general case and give simple criteria
which imply existence of singular spectrum for rank one perturbations.

2 Preliminary results and bounds for general Jacobi operators

We consider rank one perturbations of the self-adjoint operator A in the Hilbert space H

Aθ = A + θ〈ϕ, ·〉ϕ ,

where 〈·, ·〉 is the inner product in H , ϕ is a cyclic vector of A, and θ ∈ R. We shall denote by ρθ the measure
generated by the spectral measure of Aθ and the cyclic vector ϕ, so that

Fθ(z) :=
〈
ϕ, (Aθ − z)−1ϕ

〉
=
∫

R

dρθ(x)
x− z

.

We set F = F0.
It turns out that for any Borel set B∫

R

ρθ(B) dθ = |B| (2.1)

(see [13, Theorem 1.8] or [11]), where | · | denotes Lebesgue measure. When the integration takes place over the
interval (α, β) then the following result holds (see [13, Theorem 1.12]).

Lemma 2.1 Let α < β. Then if B is a Borel set, we have

∫ β

α

ρθ(B) dθ =
1
π

∫
B

arg
(

1 + βF (E + i0)

1 + αF (E + i0)

)
dE .

Now, let us define the set

ΛM = {E : Im F (E + i0) > M} , M ≥ 0 , (2.2)

where

F (E + i0) := lim
y↓0

F (E + iy)

which exists and is finite for a.e. E.
Lemma 2.1 yields the following result:

Lemma 2.2 Let α < β such that αβ > 0. Then for any interval I the following inequality holds

∫ β

α

ρθ(I ∩ ΛM ) dθ ≤ 2
π

arctan
(

1

2M

„
1

α
− 1

β

«)
|I ∩ ΛM | .

P r o o f. Let

w = Tz =
βz + 1
αz + 1

.

For each M > 0, T maps the half plane Im z > M onto the disk

(
β

α
− x

)2

+
(

y − β − α

2α2M

)2

<

(
β − α

2α2M

)2

.

From here it follows that if Im z > M then argw ≤ 2 arctan
(

1
2M

(
1
α − 1

β

))
.
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Using Lemma 2.1 we obtain∫ β

α

ρθ(I ∩ ΛM ) dθ =
1
π

∫
I∩ΛM

argT (F (E + i0)) dE

≤ 2
π

∫
I∩ΛM

arctan
(

1

2M

„
1

α
− 1

β

«)
dE

=
2
π

arctan
(

1

2M

„
1

α
− 1

β

«)
|I ∩ ΛM | .

The estimate given in Lemma 2.2, holds in general for self-adjoint operators generated by rank one perturba-
tions.

Remark 2.3 To study the singular spectrum we only need to consider M = 0, in which case Lemma 2.2 is
not required since we can use (2.1). Nevertheless, we believe that the more general situation M ≥ 0 could be
of interest, particularly since the set ΛM is related to asymptotic properties of the generalized eigenvectors (cf.
[12]). Moreover, the proofs do not become more complicated if we take M ≥ 0.

Throughout this paper the unperturbed self-adjoint operator will be considered to be a Jacobi operator. In
the Hilbert space of square summable sequences �2

({0, 1, 2, . . .}), we define a Jacobi operator J as the closed
symmetric operator whose matrix representation is a Jacobi matrix, i. e.,⎛

⎜⎜⎜⎝
a0 b0 0 0 · · ·
b0 a1 b1 0 · · ·
0 b1 a2 b2 · · ·
...

...
...

...

⎞
⎟⎟⎟⎠ , (2.3)

where {an} is a sequence of real numbers and {bn}∞n=0 is a sequence of real positive numbers. We assume that
the limit point case holds at∞ and therefore that the operator J is the only self-adjoint realization of the matrix
(2.3), see [14] and [3, Chapter VII] for a review of these concepts. By the spectral theorem there is a spectral
measure ρ for J corresponding to the vector δ0 = (1, 0, 0, . . .) such that for any bounded function f of J

〈δ0, f(J)δ0〉 =
∫

R

f(λ) dρ(λ) .

Now, consider the following finite Jacobi matrix

JN :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0

b0 a1 b1 ©
b1 a2 b2

. . .
© aN−2 bN−2

bN−2 aN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2.4)

and let us denote by 
P
(
λj

)
=
(
P0

(
λj

)
, P1

(
λj

)
, . . . , PN−1

(
λj

))T
the eigenvectors of JN corresponding to the

eigenvalues λj , j = 1, . . . , N . We shall assume the vector 
P
(
λj

)
to be normalized in such a way that P0

(
λj

)
= 1

for all j, and that λ1 < . . . < λN .
A notable consequence of the quadrature formula is the following result, firstly formulated by Chebyshev in

a more general form and proved independently by Markov and Stieltjes (see [1, Theorem 2.5.4] and [8]). We
include a sketch of the proof for the readers’ convenience.

Theorem 2.4 Let ρ be the spectral measure with respect to δ0 of a self-adjoint Jacobi operator of the form
(2.3) with fixed given entries ao, . . . , aN−2, b0, . . . , bN−2. Let

∥∥
P (λ�)
∥∥ =

(
N−1∑
n=0

P 2
n(λ�)

)1/2
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where 
P (λ�) are the eigenvectors of the matrix JN corresponding to the eigenvalues λ� as defined above. Then
the following inequality holds:

ρ
((

λj , λi+1

)) ≥ i∑
�=j+1

∥∥
P (λ�)
∥∥−2

, j ∈ {1, . . . , N − 2} and j < i ≤ N − 1 .

P r o o f. (Sketch). A particular case of the quadrature formula (see [1]) valid for every polynomial ϕ(t) of
degree no greater than 2N − 2 is

∫
R

ϕ(t) dρ(t) =
N∑

k=1

ϕ(λk)∥∥
P (λk)
∥∥2 , (2.5)

where 
P (λk) is the eigenvector of the finite matrix JN corresponding to the eigenvalue λk and ρ is the spectral
measure of the semi-infinite Jacobi matrix J .

Consider now the polynomial ϕ(t) to be defined as follows

ϕ(λk) =

{
1 if k = j + 1 , . . . , i ,

0 otherwise ,
(2.6)

ϕ′(λk) = 0 for all k 	= i + 1 . (2.7)

From (2.5) and (2.6) it follows straightforwardly that

∫
R

ϕ(t) dρ(t) =
i∑

k=j+1

∥∥
P (λk)
∥∥−2

.

Now, it is not difficult to show that conditions (2.6) and (2.7) imply

ϕ(t) ∈
{

(0, 1] if λj ≤ t < λi+1 ,

(−∞, 0] if t ≥ λi+1 ,

and from this one obtains∫
R

ϕ(t) dρ(t) ≤
∫ λi+1−0

λj+0

dρ(t) .

Remark 2.5 Notice that the assertion of the theorem holds even when the semi-infinite matrix J does not
have the same entry aN−1 as JN .

Remark 2.6 The quadrature formula (2.5) is actually valid for every measure that is the solution of the mo-
ment problem associated with the semi-infinite Jacobi matrix J . Hence, Theorem 2.4 holds independently of
whether the matrix J corresponds to the limit point case.

Using the estimate from above given by Lemma 2.2 and the estimate from below given by Theorem 2.4 we
can get bounds on the averages of norms of eigenvectors of JN that hold for general Jacobi operators J .

In the theorem below, ρa0 denotes the spectral measure of the Jacobi operator J with matrix representation
(2.3) which has first entry a0. Similarly, λj(a0) denotes an eigenvalue of the finite matrix JN defined above with
first entry a0 and 
P

(
λj(a0)

)
the corresponding eigenvector. As in the previous theorem the norm of these vectors

will be denoted by
∥∥
P
(
λj(a0)

)∥∥.

Theorem 2.7 Let α < β. Denote by λj the eigenvalues of the finite matrix JN with a0 = 0 and define
I =

(
λj−2, λj+2

)
.

If ∫ β

α

ρa0

(
I ∩ ΛC

M

)
da0 = 0 ,

then
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∫ β

α

∥∥
P
(
λj(a0)

)∥∥−2 da0 ≤ 2
π
|I ∩ ΛM |

∫ 1
2M

(
1
α− 1

β

)
0

dy

y2 + 1
for 3 ≤ j ≤ N − 2 .

Recall that | · | denotes Lebesgue measure and ΛM is defined by (2.2).

P r o o f. Let us denote by JN (a0) the finite matrix (2.4) with first entry a0. Observe that it is not possible for
a real number λ to be simultaneously an eigenvalue for JN (a0) and JN (ã0) with a0 	= ã0. To see this consider
the recurrence formulas generated by JN

(aN−1 − λ)wN−1 + wN−2bN−1 = 0 ,

biwi−1 + (ai − λ)wi + bi+1wi+1 = 0 , 1 ≤ i ≤ N − 2 .

If we fix wN−1 ∈ R, then wN−2, wN−3, . . . , w0 are defined by these equations and wN−k(λ) will be a
polynomial of degree k − 1 in λ.

Define

w−1(λ) = (a0 − λ)w0 + b1w1 ,

where w−1(λ) is a polynomial of degree N in λ and the roots of this polynomial are the eigenvalues of JN . Since
the coefficient a0 does not appear in w0 or w1, it is not possible to have the same eigenvalue λ of JN for two
different values of a0.

Therefore, for every a0,(
λj−1(a0), λj+1(a0)

) ⊂ (λj−2, λj+2v) = I

and

ρa0(I) ≥ ρa0

(
λj−1(a0), λj+1(a0)

)
.

Hence, if we apply Theorem 2.4 and integrate we obtain

∫ β

α

ρa0(I) da0 ≥
∫ β

α

∥∥
P
(
λj(a0)

)∥∥−2 da0 . (2.8)

Now, assuming

∫ β

α

∥∥
P
(
λj(a0)

)∥∥−2 da0 >
2
π
|I ∩ ΛM |

∫ 1
2M

(
1
α− 1

β

)
0

dy

y2 + 1
(2.9)

and putting together inequalities (2.8), (2.9) and Lemma 2.2 we obtain∫ β

α

ρa0(I) da0 >

∫ β

α

ρa0

(
I ∩ ΛM

)
da0 ,

which is a contradiction to the hypotheses∫ β

α

ρa0

(
I ∩ ΛC

M

)
da0 = 0 .

Observe that the above theorem holds if we consider aN−1 instead of a0.

Remark 2.8 If we are able to have estimates on the averages of the norms of the eigenvectors P
(
λj

)
of JN

and on the Lebesgue measure of the set ΛM then we can use Theorem 2.7 to obtain conditions which imply∫ β

α

ρa0

(
I ∩ ΛC

M

)
da0 > 0 ,

that is, ρa0

(
I ∩ΛC

M

)
> 0 for a0 ∈ B ⊂ (α, β) and |B| > 0. This has particular interest in the case M = 0 since

ΛC
0 is a minimal support of the singular spectra. We shall have mixed spectrum in I for a positive measure set of

the a0’s in (α, β) if
∫ β

α
ρa0

(
I ∩ ΛC

0

)
da0 > 0 and |I ∩ Λ0| > 0, Λ0 dense in I .
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As a consequence of the previous theorem we obtain the following estimate.

Corollary 2.9 Consider the finite matrix JN defined in (2.4) and let λj , j = 1, . . . , N , and 
P
(
λj

)
denote its

eigenvalues and the corresponding eigenvectors. Then∫
R

∥∥
Pj(a0)
∥∥−2 da0 ≤ λj+2 − λj−2 , where 3 ≤ j ≤ N − 2 .

P r o o f. Take a semi-infinite Jacobi matrix such that |I ∩ Λ0| = |I| where I = λj+2 − λj−2. We can, for
example, start with a spectral function ρ such that for almost every x ∈ I, dρ

dx (x) > 0 and then construct the
operator J as in Example 3.4 (b) following Theorem 3.2.

If we change ai, i = 0, . . . , N − 1, and bi, i = 0, . . . , N − 2, then we still have for the perturbed operator
that |I ∩Λ0| = |I| holds. This follows from the Kato–Rosenblum theorem about the invariance of the absolutely
continuous part under trace class perturbations [10] or the Gilbert–Pearson theory of subordinacy [9], since a
local perturbation does not modify the set of points where we do not have subordinate solutions.

Since |I ∩ Λ0| = |I| implies
∣∣I ∩ ΛC

0

∣∣ = 0 and
∫ β

α
ρa0

(
I ∩ ΛC

0

)
da0 ≤

∣∣I ∩ ΛC
0

∣∣ = 0, we can apply the
previous theorem to obtain∫ β

α

∥∥
P
(
λj(a0)

)∥∥−2 da0 ≤ |I| = λj+2 − λj−2 .

3 Jacobi operators constant in an interval and examples

In what follows we shall consider the case where the potential of J is constant in an interval, that is a0 = a1 =
. . . = aN−1 =: a, and where b0 = b1 = . . . = bN−1 = 1, since in this case quite explicit calculations are
possible. A similar construction can be made for any family of finite matrices which preserve at least three eigen-
values when the first entry a0 and the last one, aN−1, vary, provided an estimation of the norm of eigenvectors is
possible.

Let us consider the linear transformation Jθ
N : R

N → R
N given by

Jθ
N :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ 1
1 a 1 ©

1 a 1

1
. . .

© . . . 1
1 1

θ−a + a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, θ , a ∈ R . (3.1)

The eigenvectors and the corresponding eigenvalues are⎛
⎜⎜⎜⎜⎜⎝

1
θ−1

θ−2

...

θ−(N−1)

⎞
⎟⎟⎟⎟⎟⎠ ←→ λN = θ +

1
θ

+ a ,


P
(
λj

)
:=

⎛
⎜⎜⎜⎝

P0

(
λj

)
P1

(
λj

)
...

PN−1

(
λj

)

⎞
⎟⎟⎟⎠ ←→ λj = 2 cos(π(1− j/N)) + a ,

where

Pn

`
λj

´
:=

sin(π(1− j/N)(n + 1)) − θ sin(π(1− j/N)n)

sin(π(1 − j/N))
, j = 1 , 2 , . . . , N −1 , n = 0 , 1 , 2 , . . . , N −1 .
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We have normalized so that P0

(
λj

)
= 1. One way of finding the eigenvectors above, is to look for solutions of

the form

Pn(λ) = Azn + Bz−n

for complex z where the eigenvalues λ will be related to z by λ =
(
z + 1

z

)
.

Notice that all eigenvalues of Jθ
N with the exception of one, do not depend on θ. This will be relevant for what

follows. For simplicity we shall consider the case a = 0.
Let us calculate the norm of the eigenvector 
P

(
λj

)
corresponding to the eigenvalue λj which does not depend

on θ. Using the identity sin x = eix−e−ix

2i , after some elementary calculations we obtain, for all j = 1, . . . , N−1,

∥∥
P
(
λj

)∥∥2 =
N−1∑
n=0

P 2
n

(
λj

)
=

N

2(sin π(1− j/N))2
∣∣eiπ(1−j/N) − θ

∣∣2 . (3.2)

First we shall obtain a lower bound given by the next lemma.

Lemma 3.1 Let J be a semi-infinite Jacobi matrix of the form (2.3) such that ai = 0 and bi = 1 for i =
0, 1, 2, . . . , N − 2, i.e.,

J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0 1

. . . ©
. . .

. . .
1 0 1

1 aN−1 bN−1

bN−1 aN bN

. . .
© . . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Consider the interval

I =
(
2 cos

(
π
(
1− (j − 1)/N

))
, 2 cos

(
π
(
1− (j + 1)/N

)) )
,

assuming j ∈ {1, . . . , N − 1} fixed. Let ρθ be the spectral measure of the operator

Jθ = J + θ〈δ0, ·〉δ0 ,

where 〈·, ·〉 is the inner product in �2 and δ0 is the sequence whose first element is 1 and all others are 0. Then∫ β

α

ρθ(I) dθ ≥ 2
N

sin(π(1 − j/N))
∫ η

ξ

dy

y2 + 1
,

where ξ = α−cos(π(1−j/N))
sin(π(1−j/N)) and η = β−cos(π(1−j/N))

sin(π(1−j/N)) .

P r o o f. Consider the perturbed operator Jθ and apply Theorem 2.4. Then we know that

ρθ

((
λj−1, λj+1

)) ≥ ∥∥
P
(
λj

)∥∥−2
.

In our case, since a0, . . . , aN−2 and b0, . . . , bN−2 coincide with the entries of Jθ
N see (3.1), we can take λj

and 
Pj

(
λj

)
to be the eigenvalues and the corresponding eigenvectors of Jθ

N . Clearly I =
(
λj−1, λj+1

)
.

According to (3.2) we have∫ β

α

ρθ

((
λj−1, λj+1

))
dθ ≥ 2 sin2(π(1− j/N))

N

∫ β

α

dθ∣∣eiπ(1−j/N) − θ
∣∣2

=
2
N

sin
(
π(1 − j/N)

) ∫ η

ξ

dy

y2 + 1
.
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Notice that the operator Jθ is the same as J , just with a change in the first entry of the main diagonal.
With the tools developed in last section it is not hard to prove the following result.

Theorem 3.2 Let α < β. Consider the perturbed semi-infinite Jacobi matrix Jθ defined in the previous lemma
and let I , ξ(α) and η(β) be defined as in that lemma. If

2
N

sin
(
π(1 − j/N)

) ∫ η

ξ

dy

y2 + 1
>

2
π

∣∣I ∩ ΛM

∣∣ ∫ 1
2M

(
1
α− 1

β

)
0

dy

y2 + 1
, (3.3)

then ∫ β

α

ρθ

(
I ∩ ΛC

M

)
dθ > 0 .

P r o o f. The upper bound given by Lemma 2.2 together with the lower bound of Lemma 3.1 and the hypothe-
ses of the theorem give us∫ β

α

ρθ(I) dθ >

∫ β

α

ρθ(I ∩ ΛM ) dθ

and since ∫ β

α

ρθ(I) dθ =
∫ β

α

ρθ

(
I ∩ ΛC

M

)
dθ +

∫ β

α

ρθ(I ∩ ΛM ) dθ

we obtain ∫ β

α

ρθ

(
I ∩ ΛC

M

)
dθ > 0

and the theorem is proved.

Remark 3.3 If we consider the case M = 0 then Theorem 3.2 provides a condition for the existence of mixed
spectrum for Jθ. The set Λ0 is an essential support of the absolutely continuous part of the measure (see [2]),
invariant under rank one perturbation. Thus one has mixed spectrum in I for a positive measure set of the λ’s in
(α, β) if

∫ β

α
ρθ

(
I ∩ ΛC

0

)
dθ > 0 and |I ∩ Λ0| > 0, Λ0 dense in I (cf. Remark 2.8).

In more general situations than the ones considered in the theorem, the result stated in it may not be true. To
see this let us recall the following statement which appeared in [6]:

Theorem (1.2) For any measurable set B ⊂ R there exists a family of rank-one perturbations
{Aλ}λ∈R such that Aλ has dense absolutely continuous and dense singular spectrum for almost every
λ ∈ B and dense absolutely continuous (but no singular) spectrum for almost every λ 	∈ B.

In this result the Aλ’s are self-adjoint operators with simple spectrum and therefore, by a theorem of Stone
[15], they are self-adjoint Jacobi operators. If we choose B to be a bounded subset of R, then there will not exist
an � > 0 such that any interval (α, β) with at least length � will contain a set of coupling constants of positive
measure which correspond to mixed spectra. This illustrates the case opposite to the following examples, where
we use Theorem 3.2.

Examples 3.4 (a) In (3.3) take j = 2, N = 4 and M = 0. In this case the condition∫ β

α

dy

y2 + 1
> 2 |I ∩ Λ0|

where I =
(−√2,

√
2
)
, implies singular spectrum in I for a set of coupling constants of positive measure which

lies in the interval (α, β).
(b) Let us take a set B ⊂ [−2, 2] = I with |B| = 1 such that B and BC are essentially dense in I ,

that is, for every subinterval J ⊂ I we have |B ∩ J | > 0 and the same for BC . Now consider the measure
dρ(x) = χB(x) dx where χ denotes the characteristic function of B (χB(x) = 1 if x ∈ B and zero otherwise).
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Once we have the measure ρ, we can construct a Jacobi Matrix Jρ such that ρ is the spectral function of Jρ. In
fact if we orthonormalize the monomials 1, λ, λ2, λ3, . . . with respect to the scalar product

〈f, g〉ρ =
∫

R

f(x)g(x) dρ(x)

to obtain the orthonormal family of polynomials 1 ≡ P0(λ), P1(λ), . . . , Pn(λ), . . . , where Pn is of degree n,
then the coefficients ak and bk of Jρ can be written as

ak = 〈xPk(x), Pk(x)〉ρ ,

bk = 〈xPk(x), Pk+1(x)〉ρ
(see [3]).

From [5, Example 1] we know that Jθ := Jρ + θ〈δ0, ·〉 has mixed spectrum for every θ 	= 0 in every
subinterval of I .

If we add a finite rank perturbation R such that the Jacobi Matrix

JR = Jρ + R

satisfies ai = 0 and bi = 1 for i = 1, 2, . . . , N − 2, then the absolutely continuous part of J will be unitarily
equivalent to the absolutely continuous part of Jρ by Kato–Rosenblum theorem see [10, Chapter 10, Theorem
4.3].

Therefore a support for the a.c. spectrum of Jθ
R is B, for every θ ∈ R, and the restriction of the spectral

measure of Jθ
R is purely singular

Jθ
R = JR + θ〈δ0, ·〉δ0 .

Since
∣∣BC

∣∣ > 0, it follows from (2.1) the existence of a set C of positive Lebesgue measure such that if
θ ∈ C, then Jθ

N has singular spectrum somewhere in R (see [5, Cororally 2.7] for example).
Using Theorem 3.2 above, much more can be said about the set C and the location of singular spectrum. If an

interval I of the type considered in the theorem is fixed, then we obtain an estimate on the length of (α, β) which
implies |(α, β) ∩ C| > 0. This estimate depends on the size of B. Moreover for θ ∈ (α, β) ∩ C the operator Jθ

R

will have singular spectrum in I .

Remarks 3.5 1) Theorem 3.2 allows us to conclude existence of singular spectrum in some intervals I . How-
ever it does not tell us that this kind of spectra is everywhere in I . To give conditions which guarantee this is an
open question as far as we know.

2) The examples given above use only a particular case of Theorem 3.2, namely when M = 0.

4 Singular spectrum in the general case

Now we turn to the more general case of an abstract self-adjoint operator A and its family of rank one perturba-
tions

Aθ = A + θ〈ϕ, ·〉ϕ , θ ∈ R , ‖ϕ‖ < ∞ ,

where ϕ is a cyclic vector for A.
Using just Lemma 2.1 it is possible to give a simple criterion to have singular spectrum somewhere in R.
From Lemma 2.1 we have, if 0 < α < β,

∫ β

α

ρθ(R) dθ =
1
π

∫
R

arg(1 + βF (E + i0))− arg(1 + αF (E + i0)) dE

= |Aαβ |+ 1
π

∫
Λ

fαβ(E) dE ,

(4.1)
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where

Aαβ :=
{

E : − 1

α
< F (E + i0) < − 1

β

}
,

Λ := {E : Im F (E + i0) > 0} ,

fαβ(E) = arg(1 + βF (E + i0))− arg(1 + αF (E + i0)) ,

and as before
F (z) =

〈
ϕ, (A− z)−1ϕ

〉
.

Observe that Λ supports the a.c. part of Aθ for every θ and Aαβ supports the singular part of Aθ for a.e.
θ ∈ (α, β). See [13] or [4] for example.

Since ρθ(∆) = 〈Eθ(∆)ϕ, ϕ〉 we know that ρθ(R) = ‖ϕ‖2 for all θ ∈ R and from (4.1) we obtain

|Aαβ | = (β − α) ‖ϕ‖2 − 1
π

∫
Λ

fαβ(E) dE ≥ (β − α) ‖ϕ‖2 − |Λ| . (4.2)

The next result then follows

Theorem 4.1 If

β − α >
|Λ|
‖ϕ‖2

then the family of rank one perturbations

Aθ = A + θ〈ϕ, ·〉ϕ

has some singular spectrum for θ ∈ B, where |B| > 0 and B ⊂ (α, β).

P r o o f. The condition β − α > |Λ|
‖ϕ‖

2
implies |Aαβ | > 0 by (4.2). Since

∫ β

α
ρθ(Aαβ) dθ = |Aαβ | and Aαβ

supports the singular part, the results follows.
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